Entrainment Dissociates Transcription and Translation of a Circadian Clock Gene in Neurospora
نویسندگان
چکیده
Circadian systems coordinate the daily sequence of events in cells, tissues, and organisms. In constant conditions, the biological clock oscillates with its endogenous period, whereas it is synchronized to the 24 hr light:dark cycle in nature. Here, we investigate light entrainment of Neurospora crassa to photoperiods that mimic seasonal changes. Clock gene (frequency, or frq) RNA levels directly reflect the light environment in all photoperiods, whereas the FRQ protein follows neither RNA levels nor light transitions. Induction of frq RNA and protein can be dissociated by as much as 6 hr, depending on photoperiod. The phase of entrainment at the physiological level (e.g., asexual spore development) correlates with FRQ protein. Thus, a dissociation of transcription, translation, and protein stability is fundamental to circadian entrainment of Neurospora. Our findings suggest that simple feedback models are insufficient to explain the molecular circadian mechanisms under entrained conditions and that clock control of light input pathways involves posttranscriptional regulation. The regulators mediating the dissociation between RNA and protein levels are still unknown and will be the key to understanding both circadian timing at the molecular level and how the clock exerts control over many cellular processes.
منابع مشابه
Entrainment of the Neurospora circadian clock.
Neurospora crassa has been systematically investigated for circadian entrainment behavior. Many aspects of synchronization can be investigated in this simple, cellular system, ranging from systematic entrainment and drivenness to masking. Clock gene expression during entrainment and entrainment without clock genes suggest that the known transcription/translation feedback loop is not alone respo...
متن کاملTranscriptional and post-transcriptional regulation of the circadian clock of cyanobacteria and Neurospora.
Circadian clocks are self-sustained oscillators modulating rhythmic transcription of large numbers of genes. Clock-controlled gene expression manifests in circadian rhythmicity of many physiological and behavioral functions. In eukaryotes, expression of core clock components is organized in a network of interconnected positive and negative feedback loops. This network is thought to constitute t...
متن کاملComprehensive Modelling of the Neurospora Circadian Clock and Its Temperature Compensation
Circadian clocks provide an internal measure of external time allowing organisms to anticipate and exploit predictable daily changes in the environment. Rhythms driven by circadian clocks have a temperature compensated periodicity of approximately 24 hours that persists in constant conditions and can be reset by environmental time cues. Computational modelling has aided our understanding of the...
متن کاملThe frequency gene is required for temperature-dependent regulation of many clock-controlled genes in Neurospora crassa.
The circadian clock of Neurospora broadly regulates gene expression and is synchronized with the environment through molecular responses to changes in ambient light and temperature. It is generally understood that light entrainment of the clock depends on a functional circadian oscillator comprising the products of the wc-1 and wc-2 genes as well as those of the frq gene (the FRQ/WCC oscillator...
متن کاملEpigenetic and Posttranslational Modifications in Light Signal Transduction and the Circadian Clock in Neurospora crassa
Blue light, a key abiotic signal, regulates a wide variety of physiological processes in many organisms. One of these phenomena is the circadian rhythm presents in organisms sensitive to the phase-setting effects of blue light and under control of the daily alternation of light and dark. Circadian clocks consist of autoregulatory alternating negative and positive feedback loops intimately conne...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Current Biology
دوره 14 شماره
صفحات -
تاریخ انتشار 2004